DPP - 8 (Current Electricity)

Video Solution on Website:-

Video Solution on YouTube:-
Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/55
https://youtu.be/Tdv9nluQq2w
https://physicsaholics.com/note/notesDetalis/52

Q 1. In the arrangement shown in figure when the switch S_{2} is open, the galvanometer shows no deflection for $l=\mathrm{L} / 2$. When the switch S_{2} is closed, the galvanometer shows no deflection for $l=5 \mathrm{~L} / 12$. The internal resistance (r) of 6 V cell, and the emf E of the other battery are respectively-

(A) 3ohm, 8 V
(B) $2 \mathrm{ohm}, 12 \mathrm{~V}$
(C) $20 \mathrm{hm}, 24 \mathrm{~V}$
(D) $3 \mathrm{ohm}, 12 \mathrm{~V}$

Q 2. In the following figure, the p.d. between the points M and N is balanced at 50 cms length. The length in cms, balancing for the p.d. between points N and C will be -

(A) 40
(B) 100
(C) 75
(D) 25

Q 3. Correct diagram for the determination of internal resistance of a primary cell by potentiometer
(A)

(B)

(C)

(D)

Q 4. With two resistance R_{1} and $R_{2}\left(>R_{R}\right)$ in the two gaps of a metre bridge the balance was found to be $1 / 3 \mathrm{~m}$ from the zero end. When a 6Ω resistance is connected in series with the smaller of the two resistance, the point is shifted to $2 / 3 \mathrm{~m}$ from the same end, then R_{1} and R_{2} are -
(A) $2 \Omega, 4 \Omega$
(B) $3 \Omega, 6 \Omega$
(C) $4 \Omega, 8 \Omega$
(D) $4 \Omega, 2 \Omega$

Q 5. Awire connected in the left gap of a metre bridge balances a 10 ohm resistances in the right gap at a point which divides the bridge wire in the ratio 3:2. Then the resistance of the wire will be -
(A) 5 ohm
(B) 10 ohm
(C) $150 \hbar \mathrm{~m}$
(D) 20 ohm

Q 6. A potentiometer experiment is setup as shown in fig. If both the galvanometer shows null deflections for the sliding contacts at x and y as shown then -

(A) $E_{1}=E_{1}$
(B) $E_{1}>E_{2}$
(C) $E_{1}<E_{2}$
(D) none of the above

Q 7. A cell of emf (E) and internal resistance (r) is balanced across (l) length of potentiometer wire. If another cell of emf 2 E and internal resistance (2 r) is connected in parallel to the first cell, then the balancing length will be
(A) $1 / 3$
(B) $21 / 3$
(C) $41 / 3$
(D) 21

Q 8. In a potentiometer arrangement shown in fig. The balancing length for p.d. across xy points is found to be 45.5 cm . Then the balancing length for p.d. across (Y) and (Z) would be

(A) 45.50 cm
(C) 36.40 cm
(B) 56.87 cm
(D) none of the above

Q 9. A 6 volt battery is connected to the terminals of a three metre long wire of uniform thickness and resistance of 100 ohm . The difference of potential between two points on the wire separated by a distance of 50 cm will be
(A) 2 volt
(B) 3 volt
(C) 1 volt
(D) 1.5 volt

Q 10. In an experiment on measurements of emf of a cell by a potentiometer, the balancing length for a cell of emf E and internal resistance r is found to be 1 . Now if another cell of emf Eand internal resistance $2 r$ is connected in parallel to the first cell and balancing length determined, then the balancing length will be-
(A) 1
(B) 21
(C) $21 / 3$
(D)none

Q 11. If galvanometer has 500 ohm resistance and $R=5000$ ohm, then what should be the resistance connected to galvanometer in parallel to it so that its deflection reduces to half -

(A) 544 ohm
(B) 500 ohm
(C) 455 ohm
(D) None

Q 12. A meter bridge with resistance R_{1} and R_{2} connected in two gaps is balanced at 0.4 m from zero end. If smaller resistance is connected in series with 10 ohm resistance, the balance point is shifted to 0.4 m from other end. The value of smaller resistance is -
(A) 40 ohm
(B) 60 ohm
(C) 20 ohm
(D) 8 ohm

Q 13. If resistance of potentiometer wire $=15 \mathrm{r}$ then calculate the balance length l :

E/2
(A) 320 cm
(B) 200 cm
(C) 400 cm
(D) 100 cm

Q 14. A 10 mlong wire of resistance 20 ohm is connected in series with a battery of emf 3 V (negligible internal resistance) and a resistance of 10 ohm . Find the potential gradiant along the wire -
(A) $3 \mathrm{~V} / \mathrm{m}$
(B) $0.2 \mathrm{~V} / \mathrm{m}$
(C) $0.1 \mathrm{~V} / \mathrm{m}$
(D) $0.3 \mathrm{~V} / \mathrm{m}$

Q 15. Figure shows the potentiometer arrangement to compare the emf of cells E_{1} and E_{2}. Length of the resistance wire $A B$ is 100 cm . If null point obtained for E_{1} and E_{2} are at distance 20 cm and 40 cm respectively from B then E_{1} / E_{2} is -

(A) $1: 2$
(B) $4: 5$
(C) $3: 2$
(D) $4: 3$

Answer Key

Q. 1 b	$\text { Q. } 2 \mathrm{~b}$	$\text { Q. } 3 \text { c }$		0.5
$\text { Q. } 6 \mathrm{c}$	$\text { Q. } 7 \mathrm{c}$	$\text { Q. } 8 \mathrm{c}$	$0.9 \mathrm{c}$	Q.10 a
Q. 11 c	$\text { Q. } 12 \mathrm{~d}$	$\text { Q. } 13 \mathrm{a}$	Q. 14 b	Q. 15 d

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI
₹3,208/mo
₹ 38,500
₹ $4,667 / \mathrm{mo}$
₹ 28,000
6 months
No cost EMI

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

12 months	₹ $2,888 / \mathrm{mo}$
No cost EMI	$+10 \%$ OFF ₹ 34,650

6 months
No cost EMI
₹ $4,200 / \mathrm{mo}$

$$
+10 \% \text { OFF ₹ } 25,200
$$

To be paid as a one-time payment
Use code PHYSICSLIVE to get 10\% OFF on Unacademy PLUS.

Written Solution

DPP-8 Current Electricity: meter bridge, potentiometer, post office box By Physicsaholics Team

Solution: 1
internal resistance

Potential drop by $6 v$ battery is $6 V$

$$
\begin{gathered}
6 V=\frac{E}{L} \cdot L / 2 \\
E=12 \mathrm{~V}
\end{gathered}
$$

Ans. b

In the following figure, the p.d. between the points M and N is balanced at 50 cms length. The length in cms , balancing for the p.d. between points N and C will be -

Solution: 2
(1)

E
\Rightarrow in the first case p.pb/a MN is equal to P. dtarrouge 50 cm wine.

$$
\begin{aligned}
& E / 3=k \times 50 \\
& K=E / 150
\end{aligned}
$$

\Rightarrow Intend care the P.D b/yz $\sqrt{8}$ c is $2 E / 3$ hence, we can writer as
P)

$$
\begin{aligned}
& 2 E / 3=k n \\
& 2 E / 3=E / 150^{\circ} \cdot n \Rightarrow x=100 \mathrm{~cm}
\end{aligned}
$$

Solution: 3
this is an standard arrengement option c

Solution: 4

O care :-

$$
\begin{aligned}
& R_{1} \times 2 R_{3}=R_{2} \times 1 / 3 \\
& R_{2}=2 R_{1}
\end{aligned}
$$

$$
\begin{gathered}
\left(R_{1}+6\right) \times 1 / 3=R_{2} \times 2 / 3 \\
\left(R_{1}+6\right)=2 \cdot\left(2 R_{1}\right) 4 \\
R_{1}+6=4 R_{1} \\
6=3 R_{1} \\
R_{1}=2 \sim \\
R_{2}=4 \sim
\end{gathered}
$$

Ans. a

Solution: 5

Ans. c

Solution: 6

$E=k x$, moke the length of balanging point more will be emf of that battery and hence C is correct option as $Y>X$

Solution: 7
in care of (1) cell

$$
\begin{equation*}
E=k \ell \quad \Rightarrow \quad-\quad=1 / 2 \tag{1}
\end{equation*}
$$

in cate when both are connected parallel

$$
\begin{aligned}
& \text { se when botheale connected parallel } \\
& \qquad \frac{E 1 / r_{1}+E_{2} / r_{2}}{1 / r_{1}+1 / r_{2}}=\frac{E / r+2 E / 2 r}{1 / r+1 / 2 \gamma}=\frac{2 E / r}{\frac{3}{2 r}} \Rightarrow 4 E / 3 \\
& \text { if Emt }=E \text { means balancing Point will not change. }
\end{aligned}
$$

if Ert $=E$ means balancing point will not change.

$$
\begin{aligned}
& E_{\text {mit }}=\text { Kl } \quad \text { from (1) } \\
& 4 E_{3}=E_{l} \cdot e^{\prime} \Rightarrow e l^{\prime}=4 l / 3
\end{aligned}
$$

Ans. c

In a potentiometer arrangement shown in fig. The balancing length for $p . d$. across wy points is found to be 45.5 cm . Then the balancing length for $p . d$. across (Y) and (Z) would be
Solution: 8
\Rightarrow drop $6 / \omega \times 84$ is $\frac{5 E_{2}}{9}$

$$
\frac{5 \varepsilon_{2}}{9}=k l_{1}=k \cdot 45 \cdot 5-0
$$

$$
g_{x}=E_{2}
$$

\Rightarrow drop b/w प1 \& Lis 4 E2/g

$$
\begin{aligned}
& x=\epsilon_{2} / 9 \\
& k=5 / 9 \frac{E_{2}}{45.5}
\end{aligned}
$$

$$
\frac{4 E_{2}}{9}=5 / 9 \frac{E_{2}}{45.5}-l_{2} \Rightarrow l_{2}=36.4 \mathrm{~cm}
$$

Ans. c

Solution: 9

$$
V_{A B}=E
$$

Potential difference acrosslength ℓ is $\mathrm{V}=\mathrm{K} \ell$
$=\frac{\mathrm{E}}{\mathrm{L}} \times 2=\frac{6}{3} \times 0.59=1$ volt

Sol. balancing length $=\ell$

Solution: 12

$$
\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{0.4}{0.6} \Rightarrow \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{2}{3}
$$

$$
\frac{\mathrm{R}_{1}+10}{\mathrm{R}_{2}}=\frac{0.6}{0.4}-\frac{\mathrm{R}_{1}+10}{3 / 2 \mathrm{R}_{\mathrm{T}}}=\frac{3}{2}
$$

$$
R_{1}=8 \Omega
$$

Sol. [A] PD of ext. ckt $=\phi \times$ balance length

$$
\begin{aligned}
& E / 2=\left(\frac{E_{2}}{2} \frac{R_{w}}{R_{w}+r}\right)^{2} \times \ell \\
& \text { or } E / 2=\frac{E}{600} \times \frac{15 r}{16 r} \times \ell \\
& \therefore \ell=\frac{600 \times 16}{30}=320 \mathrm{~cm}
\end{aligned}
$$

Sol. $[\mathbf{B}] \phi=\left(\mathrm{R}_{\text {viie }}\right) \times \frac{1}{\ell}$

$$
\begin{aligned}
& \mathrm{I}=\frac{\varepsilon}{\left.\left(\mathrm{R}_{\text {wire }}+\mathrm{R} \mathrm{exxetmar}\right)^{2}\right)=\frac{\frac{1}{2}}{(20+10)}=\frac{3}{30}=0.1 \mathrm{~A}} \\
& \phi=\frac{20 \times 0.1}{30}=0.2 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

Sol.[D] $\mathrm{E}_{1}=\mathrm{Q} \times \ell_{1}$

$$
\mathrm{E}_{2}=\mathrm{Q} \times \ell_{2}
$$

$$
\frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}}=\frac{80}{60}=\frac{4}{3}
$$

($l_{1} \& l_{2}$ should be measured from A)

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/55

Video Solution on YouTube:-
https://youtu.be/Tdv9nluQq2w

Written Solution on Website:-
https://physicsaholics.com/note/notesDetalis/52

- subsCRIBE

0
@ NEET Physics
@IITJEE_Physics physicsaholics.com

CLICK

Chalo Nikis

